Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
BMC Geriatr ; 24(1): 322, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589787

RESUMO

BACKGROUND: With the increasing number of elderly individuals worldwide, a greater number of people aged 80 years and older sustain fragility fracture due to osteopenia and osteoporosis. METHODS: This retrospective study included 158 older adults, with a median age of 85 (range: 80-99) years, who sustained hip fragility fracture and who underwent surgery. The patients were divided into two groups, one including patients who joined the post-acute care (PAC) program after surgery and another comprising patients who did not. The mortality, complication, comorbidity, re-fracture, secondary fracture, and readmission rates and functional status (based on the Barthel index score, numerical rating scale score, and Harris Hip Scale score) between the two groups were compared. RESULTS: The patients who presented with fragility hip fracture and who joined the PAC rehabilitation program after the surgery had a lower rate of mortality, readmission rate, fracture (re-fracture and secondary fracture), and complications associated with fragility fracture, such as urinary tract infection, cerebrovascular accident, and pneumonia (acute coronary syndrome, out-of-hospital cardiac arrest, or in-hospital cardiac arrest. CONCLUSIONS: PAC is associated with a lower rate of mortality and complications such as urinary tract infection, bed sore, and pneumonia in octogenarian and nonagenarian patients with hip fragility fracture.


Assuntos
Fraturas do Quadril , Pneumonia , Infecções Urinárias , Idoso , Idoso de 80 Anos ou mais , Humanos , Cuidados Semi-Intensivos , Octogenários , Nonagenários , Estudos Retrospectivos , Fraturas do Quadril/cirurgia
2.
Micromachines (Basel) ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38542579

RESUMO

Generalized broadband operation facilitates multifunction or multiband highly integrated applications, such as modern transceiver systems, where ultra-wideband bidirectional passive mixers are favored to avoid a complex up/down-conversion scheme. In this paper, a modified Ruthroff-type transmission line transformer (TLT) balun is presented to enhance the isolation of the mixer from the local oscillator (LO) to the radio frequency (RF). Compared to the conventional methods, the proposed Ruthroff-type architecture adopts a combination of shunt capacitors and parallel coupled lines to improve the return loss at the LO port, thus effectively avoiding the area consumption for the diode-to-balun impedance transformation while simultaneously providing a suitable point for IF extraction. In addition, a parallel compensation technique consisting of an inductor and resistor is applied to the RF balun to significantly improve the amplitude/phase balance performance over a wide bandwidth. Benefiting from the aforementioned operations, an isolation-enhanced 8-30 GHz passive double-balanced mixer is designed as a proof-of-principle demonstration via 0.15-micrometer GaAs p-HEMT technology. It exhibits ultra-broadband performance with 7 dB average conversion loss and 50 dB LO-to-RF isolation under 15 dBm LO power. The monolithic microwave integrated circuit area is 0.96 × 1.68 mm2 including all pads.

3.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372383

RESUMO

Male meiotic division exhibits two consecutive chromosome separation events without apparent pausing. Several studies have shown that spermatocyte divisions are not stringently regulated as in mitotic cells. In this study, we investigated the role of the canonical spindle assembly (SAC) pathway in Caenorhabditis elegans spermatogenesis. We found the intensity of chromosome-associated outer kinetochore protein BUB-1 and SAC effector MDF-1 oscillates between the two divisions. However, the SAC target securin is degraded during the first division and remains undetectable for the second division. Inhibition of proteasome-dependent protein degradation did not affect the progression of the second division but stopped the first division at metaphase. Perturbation of spindle integrity did not affect the duration of meiosis II, and only slightly lengthened meiosis I. Our results demonstrate that male meiosis II is independent of SAC regulation, and male meiosis I exhibits only weak checkpoint response.


Assuntos
Caenorhabditis elegans , Fuso Acromático , Animais , Masculino , Caenorhabditis elegans/metabolismo , Fuso Acromático/metabolismo , Espermatócitos/metabolismo , Meiose , Cinetocoros/metabolismo , Segregação de Cromossomos , Espermatogênese , Oócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
J Hepatol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38336347

RESUMO

BACKGROUND & AIMS: HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection. METHODS: HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection. Additionally, SHifter assays and cryo-electron microscopy were performed. RESULTS: We found the infectivity of splicing-deficient HBV was decreased 100-1,000-fold compared with that of wild-type HBV in hu-FRG mice. Another mutant, A487C, which loses the most abundant spliced RNA (SP1), also exhibits severely impaired infectivity. SP1 hypothetically encodes a novel protein HBcSP1 (HBc-Cys) that lacks the C-terminal cysteine from full-length HBc. In the SHifter assay, HBcSP1 was detected in wild-type viral particles at a ratio of about 20-100% vs. conventional HBc, as well as in the serum of patients with chronic hepatitis B, but not in A487C particles. When infection was conducted with a shorter incubation time of 4-8 h at lower PEG concentrations in HepG2-NTCP cells, the entry of the A487C mutant was significantly slower. SP1 cDNA complementation of the A487C mutant succeeded in rescuing its infectivity in hu-FRG mice and HepG2-NTCP cells. Moreover, cryo-electron microscopy revealed a disulfide bond between HBc cysteine 183 and 48 in the HBc intradimer of the A487C capsid, leading to a locked conformation that disfavored viral entry in contrast to the wild-type capsid. CONCLUSIONS: Prior studies unveiled the potential integration of the HBc-Cys protein into the HBV capsid. We confirmed the proposal and validated its identity and function during infection. IMPACT AND IMPLICATIONS: HBV SP1 RNA encodes a novel HBc protein (HBcSP1) that lacks the C-terminal cysteine from conventional HBc (HBc-Cys). HBcSP1 was detected in cell culture-derived HBV and confirmed in patients with chronic infection by both immunological and chemical modification assays at 10-50% of capsid. The splicing-deficient mutant HBV (A487C) impaired infectivity in human hepatocyte chimeric mice and viral entry in the HepG2-NTCP cell line. Furthermore, these deficiencies of the splicing-deficient mutant could be rescued by complementation with the SP1-encoded protein HBcSP1. We confirmed and validated the identity and function of HBcSP1 during infection, building on the current model of HBV particles.

5.
Int J Med Sci ; 21(1): 37-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164348

RESUMO

Muscle contusion is an injury to muscle fibers and connective tissues. It commonly happens in impact events, and could result in pain, swelling, and limited range of motion. Diclofenac is one of commonly used nonsteroidal anti-inflammatory drugs to alleviate pain and inflammation after injury. However, it can potentially cause some side effects including gastrointestinal complications and allergy. Betulin is a lupine-type pentacyclic triterpenoid. It is showed to have valuable pharmacological effects, but the physiological effect of betulin on muscle contusion has not been reported. This study aimed to explore the therapeutic effects of betulin on muscle contusion that produced by the drop-mass method in mice. C57BL/6 mice were randomly assigned to control (no injury), only drop-mass injury (Injury), diclofenac treatment (Injury+diclofenac), and betulin treatment (Injury+betulin) groups. Injury was executed on the gastrocnemius of the right hind limb, and then phosphate-buffered saline (PBS), diclofenac, or betulin were oral gavage administrated respectively for 7 days. Results revealed that betulin significantly restored motor functions based on locomotor activity assessments, rota-rod test, and footprints analysis. Betulin also attenuated serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels after muscle injury. Neutrophil infiltration was alleviated and desmin levels were increased after betulin treatment. Our data demonstrated that betulin attenuated muscle damage, alleviated inflammatory response, improved muscle regeneration, and restored motor functions after muscle contusion. Altogether, betulin may be a potential compound to accelerate the repair of injured muscle.


Assuntos
Contusões , Diclofenaco , Camundongos , Animais , Diclofenaco/uso terapêutico , Camundongos Endogâmicos C57BL , Contusões/tratamento farmacológico , Músculo Esquelético/lesões , Modelos Animais de Doenças
6.
Water Environ Res ; 96(1): e10977, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38254264

RESUMO

The construction of dominant algal species and bacterial strains in algal treatment technology was crucial for pollutant removal. In order to enhance the purification capability of microalgae toward heavy metals in water as well as biogas slurry and biogas, symbiotic systems were respectively constructed using Chlorella vulgaris and two different endogenous bacteria (microalgal endophytic bacteria S395-2 and plant endophytic bacteria BEB7). The results demonstrated that the endogenous bacteria (S395-2 and BEB7) effectively promote the growth, biomass yield, photosynthetic activity, and carbonic anhydrase activity of microalgae. Additionally, BEB7 exhibited superior promotion effects on microalgae compared to S395-2. Moreover, the BEB7-microalgae co-cultivation system not only efficiently removed heavy metals from water but also effectively purified the nutrients and CO2 in biogas slurry. The optimal effect was observed when the ratio of BEB7 to microalgae was 10:1. This study has established a solid theoretical foundation for the application of microalgae in pollutant purification. PRACTITIONER POINTS: Endogenous bacteria effectively promoted microalgal performance. The optimal ratio of BEB7 to microalgae was 10:1. Chlorella vulgaris-BEB7 showed the best removal performance.


Assuntos
Chlorella vulgaris , Poluentes Ambientais , Metais Pesados , Microalgas , Biocombustíveis , Bactérias , Nutrientes , Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-38056223

RESUMO

Recently, populations of Chinese spiny frogs (Quasipaa spinosa), an important amphibian species in China, have decreased, mainly due to a disease caused by the gram-negative bacteria Proteus mirabilis. To elucidate the immune response of the frogs, this study aimed to identify novel candidate genes functionally associated with P. mirabilis infection-induced "rotting skin" disease. Chinese spiny frogs were infected with P. mirabilis, and the skin transcriptome was sequenced using the MGISEQ-2000 platform. A total of 233,965 unigenes were obtained by sequencing, of which 27.23 % were known genes. Screening of differentially expressed genes (DEGs) indicated 210 unigenes differentially expressed after P. mirabilis infection, of which 132 unigenes were up-regulated, and 78 unigenes were down-regulated. Using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, DEGs were identified as enriched in signal pathways, such as oxidative phosphorylation, apoptosis, and the Janus kinase-signal transducer and activator of transcription pathway. Of the DEGs, there was a significant upregulation of the colony stimulating factor 2 receptor beta common subunit, interleukin 2 receptor subunit gamma, cathelicidin antimicrobial peptide, interleukin-17 receptor E, receptor-interacting serine/threonine-protein kinase 3, and pulmonary surfactant-associated protein D immune genes following P. mirabilis infection. Conversely, scavenger receptor cysteine-rich domain-containing group B protein, tumor protein p53 inducible nuclear protein 2, suppressor of cytokine signaling 2, and metalloreductase STEAP3 were significantly downregulated. In conclusion, the first skin transcriptome database of Chinese spiny frogs was established, and several immune genes were identified to elucidate the pathogenic mechanism of "skin rot" in Chinese spiny frogs and other cultured frogs.


Assuntos
Proteus mirabilis , Dermatopatias , Animais , Proteus mirabilis/genética , Perfilação da Expressão Gênica , Transcriptoma , Anuros , Ranidae/genética
8.
Br J Cancer ; 130(1): 31-42, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37957322

RESUMO

BACKGROUND: The tumour-draining lymph node (TDLN) plays a pivotal role in the suppression of malignant tumour, however, the immunological profile and prognostic differences between large TDLN (L-TDLN) and small TDLN (S-TDLN) in colorectal cancer (CRC) remain unclear. METHODS: We conducted a study using data from the Chinese National Cancer Center (CNCC) database, identifying 837 CRC patients with non-metastatic TDLN, and categorised them into L-TDLN and S-TDLN groups. The long-term survival outcomes and adjuvant therapy efficacy were compared between the two groups. Furthermore, we evaluated the differences in immune activation status and immune cell subsets between patients in L-TDLN and S-TDLN groups by RNA sequencing and immunohistochemical (IHC) staining. RESULTS: Patients with L-TDLN demonstrated better long-term outcomes compared to those with S-TDLN. Among patients with L-TDLN, there was no significant difference in long-term outcomes between those who received adjuvant chemotherapy and those who did not. The RNA sequencing data revealed a wealth of immune-activating pathways explored in L-TDLN. Furthermore, IHC analysis demonstrated higher numbers of CD3+ and CD8 + T cells in L-TDLN and the corresponding CRC lesions, as compared to patients with S-TDLN. CONCLUSION: Enlarged TDLN exhibited an activated anti-tumour immune profile and may serve as an indicator for favourable survival in non-metastatic CRC.


Assuntos
Neoplasias Colorretais , Linfonodos , Humanos , Linfonodos/patologia , Linfócitos T CD8-Positivos , Prognóstico , Neoplasias Colorretais/patologia
10.
Burns Trauma ; 11: tkad024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116467

RESUMO

Background: Keloids are aberrant dermal wound healing characterized by invasive growth, extracellular matrix deposition, cytokine overexpression and easy recurrence. Many factors have been implicated as pathological causes of keloids, particularly hyperactive inflammation, tension alignment and genetic predisposition. S-Nitrosylation (SNO), a unique form of protein modification, is associated with the local inflammatory response but its function in excessive fibrosis and keloid formation remains unknown. We aimed to discover the association between protein SNO and keloid formation. Methods: Normal and keloid fibroblasts were isolated from collected normal skin and keloid tissues. The obtained fibroblasts were cultured in DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The effects of DJ-1 on cell proliferation, apoptosis, migration and invasion, and on the expression of proteins were assayed. TurboID-based proximity labelling and liquid chromatography-mass spectrometry were conducted to explore the potential targets of DJ-1. Biotin-switch assays and transnitrosylation reactions were used to detect protein SNO. Quantitative data were compared by two-tailed Student's t test. Results: We found that DJ-1 served as an essential positive modulator to facilitate keloid cell proliferation, migration and invasion. A higher S-nitrosylated DJ-1 (SNO-DJ-1) level was observed in keloids, and the effect of DJ-1 on keloids was dependent on SNO of the Cys106 residue of the DJ-1 protein. SNO-DJ-1 was found to increase the level of phosphatase and tensin homolog (PTEN) S-nitrosylated at its Cys136 residue via transnitrosylation in keloids, thus diminishing the phosphatase activity of PTEN and activating the PI3K/AKT/mTOR pathway. Furthermore, Cys106-mutant DJ-1 is refractory to SNO and abrogates DJ-1-PTEN coupling and the SNO of the PTEN protein, thus repressing the PI3K/AKT/mTOR pathway and alleviating keloid formation. Importantly, the biological effect of DJ-1 in keloids is dependent on the SNO-DJ-1/SNO-PTEN/PI3K/AKT/mTOR axis. Conclusions: For the first time, this study demonstrated the effect of transnitrosylation from DJ-1 to PTEN on promoting keloid formation via the PI3K/AKT/mTOR signaling pathway, suggesting that SNO of DJ-1 may be a novel therapeutic target for keloid treatment.

11.
Mol Ther ; 31(11): 3322-3336, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689971

RESUMO

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.


Assuntos
Anticorpos Monoclonais , Anticorpos Amplamente Neutralizantes , COVID-19 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais , COVID-19/terapia , Dependovirus/genética , RNA Viral , SARS-CoV-2/genética , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Amplamente Neutralizantes/uso terapêutico
12.
ACS Nano ; 17(15): 14532-14544, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37466994

RESUMO

Direct delivery of therapeutic genes is a promising approach for treating cancers and other diseases. The current human viral vectors, however, suffer from several drawbacks, including poor cell-type specificity and difficult large-scale production. The M13 phage provides an alternative vehicle for gene therapy with engineerable specificity, but the low transduction efficiency seriously limits its translational application. In this work, we discovered important factors of cells and phages that greatly influence the phage transduction. The up-regulation of PrimPol or the down-regulation of DMBT1 in cells significantly enhanced the phage transduction efficiency. Furthermore, we found that the phage transduction efficiency was inversely correlated with the phage size. By carefully reconstructing the phage origin with the gene of interest, we designed "TransPhage" with a minimal length and maximal transduction efficiency. We showed that TransPhage successfully transduced the human cells with an excellent efficiency (up to 95%) comparable to or superior to that of the adeno-associated virus vectors. Moreover, we showed that TransPhage's tropism was specific to the cells that overexpress the target antigen, whereas adeno-associated viruses (AAVs) promiscuously infected many cell types. Using TransPhage as a gene therapy vehicle, we invented an NK-cell-mediated immunotherapy in which a membrane-bound fragment crystallizable region was introduced to cancer cells. We showed in vitro that the cancer cells expressing the membrane-bound fragment crystallizable (Fc) were effectively killed by CD16+ NK cells through an antibody-dependent cell-mediated cytotoxicity (ADCC)-like mechanism. In the xenograft mouse model, the administration of TransPhage carrying the membrane-bound Fc gene greatly suppressed tumor growth.


Assuntos
Técnicas de Transferência de Genes , Neoplasias , Humanos , Camundongos , Animais , Vetores Genéticos , Bacteriófago M13 , Terapia Genética , Células Matadoras Naturais , Neoplasias/genética , Neoplasias/terapia , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Proteínas Supressoras de Tumor/genética , DNA Polimerase Dirigida por DNA , DNA Primase/genética , Enzimas Multifuncionais
13.
Adv Sci (Weinh) ; 10(24): e2301694, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37310410

RESUMO

Nanozymes, featuring intrinsic biocatalytic effects and broad-spectrum antimicrobial properties, are emerging as a novel antibiotic class. However, prevailing bactericidal nanozymes face a challenging dilemma between biofilm penetration and bacterial capture capacity, significantly impeding their antibacterial efficacy. Here, this work introduces a photomodulable bactericidal nanozyme (ICG@hMnOx ), composed of a hollow virus-spiky MnOx nanozyme integrated with indocyanine green, for dually enhanced biofilm penetration and bacterial capture for photothermal-boosted catalytic therapy of bacterial infections. ICG@hMnOx demonstrates an exceptional capability to deeply penetrate biofilms, owing to its pronounced photothermal effect that disrupts the compact structure of biofilms. Simultaneously, the virus-spiky surface significantly enhances the bacterial capture capacity of ICG@hMnOx . This surface acts as a membrane-anchored generator of reactive oxygen species and a glutathione scavenger, facilitating localized photothermal-boosted catalytic bacterial disinfection. Effective treatment of methicillin-resistant Staphylococcus aureus-associated biofilm infections is achieved using ICG@hMnOx , offering an appealing strategy to overcome the longstanding trade-off between biofilm penetration and bacterial capture capacity in antibacterial nanozymes. This work presents a significant advancement in the development of nanozyme-based therapies for combating biofilm-related bacterial infections.


Assuntos
Bacteriófagos , Biofilmes , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Humanos , Biofilmes/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Bacteriófagos/enzimologia , Nanopartículas/química , Lasers
14.
Drug Des Devel Ther ; 17: 1275-1288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138583

RESUMO

Background: Osteoporosis is a metabolic bone disease. Osteoclasts are significantly involved in the pathogenesis of osteoporosis. AS-605240 (AS) is a small molecule PI3K-γ inhibitor and is less toxic compared to pan-PI3K inhibitors. AS also exerts multiple biological effects including anti-inflammatory, anti-tumor, and myocardial remodeling promotion. However, the involvement of AS in the differentiation and functions of osteoclasts and the effect of AS in treating patients with osteoporosis is still unclear. Purpose: This study aimed to investigate if AS inhibits the differentiation of osteoclasts and resorption of the bones induced by M-CSF and RANKL. Next, we evaluated the therapeutic effects of AS on bone loss in ovariectomy (OVX)-induced osteoporosis mice models. Methods: We stimulated bone marrow-derived macrophages with an osteoclast differentiation medium containing different AS concentrations for 6 days or 5µM AS at different times. Next, we performed tartrate-resistant acid phosphatase (TRAP) staining, bone resorption assay, F-actin ring fluorescence, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting (WB). Next, MC3T3-E1s (pre-osteoblast cells) were differentiated to osteoblast by stimulating the cells with varying AS concentrations. Next, we performed alkaline phosphatase (ALP) staining, RT-qPCR, and WB on these cells. We established an OVX-induced osteoporosis mice model and treated the mice with 20mg/kg of AS. Finally, we extracted the femurs and performed micro-CT scanning, H&E, and TRAP staining. Results: AS inhibits the formation of osteoclasts and resorption of bone triggered by RANKL by inhibiting the PI3K/Akt signaling pathway. Furthermore, AS enhances the differentiation of osteoblasts and inhibits bone loss due to OVX in vivo. Conclusion: AS inhibits osteoclast production and enhances osteoblast differentiation in mice, thus providing a new therapeutic approach for treating patients with osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Feminino , Animais , Camundongos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Diferenciação Celular , Ovariectomia
15.
EMBO Mol Med ; 15(7): e16351, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211986

RESUMO

Thromboinflammation is the major cause of morbidity and mortality in COVID-19 patients, and post-mortem examination demonstrates the presence of platelet-rich thrombi and microangiopathy in visceral organs. Moreover, persistent microclots were detected in both acute COVID-19 and long COVID plasma samples. However, the molecular mechanism of SARS-CoV-2-induced thromboinflammation is still unclear. We found that the spleen tyrosine kinase (Syk)-coupled C-type lectin member 2 (CLEC2), which was highly expressed in platelets and alveolar macrophages, interacted with the receptor-binding domain (RBD) of SARS-CoV-2 spike protein (SARS-CoV-2 RBD) directly. Unlike the thread-like NETs, SARS-CoV-2-induced aggregated NET formation in the presence of wild-type (WT), but not CLEC2-deficient platelets. Furthermore, SARS-CoV-2 spike pseudotyped lentivirus was able to induce NET formation via CLEC2, indicating SARS-CoV-2 RBD engaged CLEC2 to activate platelets to enhance NET formation. Administration of CLEC2.Fc inhibited SARS-CoV-2-induced NET formation and thromboinflammation in AAV-ACE2-infected mice. Thus, CLEC2 is a novel pattern recognition receptor for SARS-CoV-2, and CLEC2.Fc and may become a promising therapeutic agent to inhibit SARS-CoV-2-induced thromboinflammation and reduced the risk of post-acute sequelae of COVID-19 (PASC) in the future.


Assuntos
COVID-19 , Trombose , Humanos , Camundongos , Animais , SARS-CoV-2 , Inflamação , Tromboinflamação , Síndrome Pós-COVID-19 Aguda , Ligação Proteica
16.
Polymers (Basel) ; 15(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050294

RESUMO

Particulate polymer composites (PPCs) are widely applied under different elastic wave loading conditions in the automobile, aviation, and armor protection industries. This study investigates the elastic wave propagation behavior of a typical PPC, specifically a Cu/poly (methyl methacrylate) (PMMA) composite, with a wide range of particle contents (30-65 vol. %) and particle sizes (1-100 µm). The results demonstrate an inflection phenomenon in both the elastic wave velocity and attenuation coefficient with increasing volume content. In addition, the inflection point moves to the direction of low content with the increase in particle size. Notably, the elastic wave velocity, attenuation, and wavefront width significantly increased with the particle size. The inflection phenomenon of elastic wave propagation behavior in PPCs is demonstrated to have resulted from particle interaction using the classical scattering theory and finite element analysis. The particle interaction initially intensified and then reduced with increasing particle content. This study elucidates the underlying mechanism governing the elastic wave propagation behavior of high particle content PPCs and provides guidelines for the design and application of wave-absorbing composites.

17.
Life (Basel) ; 13(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36983900

RESUMO

Carvacrol is a monoterpenoid phenol that has excellent antimicrobial, antiviral, and anti-inflammatory activities. It can also improve wound healing. However, few studies have explored its antitumor effect on osteosarcoma. In this report, we tried to determine the potential efficacy of carvacrol against osteosarcoma cell lines. Our data revealed that carvacrol exposure inhibited the proliferation of osteosarcoma HOS and U-2 OS cells. In addition, carvacrol exposure enhanced the levels of cleaved PARP and caspase 3 and increased annexin V-positive cells, indicating that carvacrol exposure triggers apoptosis in osteosarcoma cell lines. Furthermore, the levels of reactive oxygen species (ROS) were enhanced after carvacrol exposure and cotreatment with NAC, the ROS scavenger, decreased the levels of cleaved PARP and caspase 3, suggesting the involvement of ROS in carvacrol-induced apoptosis. Importantly, we found that carvacrol exposure triggered several protein expressions related to endoplasmic reticulum (ER) stress, including GRP78/Bip, IRE1a, PERK, and CHOP, in HOS and U-2 OS cells, indicating that carvacrol exposure could result in ER stress in these cell lines. Cotreatment with the ER stress inhibitor 4-PBA increased the levels of cleaved PARP and caspase 3 and further suppressed cellular proliferation in carvacrol-exposed osteosarcoma cell lines. Overall, the results indicate that induced ER stress can protect cells from apoptosis, but increased ROS contributes to apoptosis in carvacrol-treated cells. In this report, we first demonstrate the role of ER stress in carvacrol-induced apoptosis and suggest that ER stress could be targeted to enhance the antitumor activity of carvacrol in osteosarcoma cell lines.

18.
Burns Trauma ; 11: tkad005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873285

RESUMO

Background: Keloids are abnormal fibrous hyperplasias that are difficult to treat. Melatonin can be used to inhibit the development of certain fibrotic diseases but has never been used to treat keloids. We aimed to discover the effects and mechanisms of melatonin in keloid fibroblasts (KFs). Methods: Flow cytometry, CCK-8 assays, western blotting, wound-healing assays, transwell assays, collagen gel contraction assays and immunofluorescence assays were applied to demonstrate the effects and mechanisms of melatonin in fibroblasts derived from normal skin, hypertrophic scars and keloids. The therapeutic potential of the combination of melatonin and 5-fluorouracil (5-FU) was investigated in KFs. Results: Melatonin significantly promoted cell apoptosis and inhibited cell proliferation, migration and invasion, contractile capability and collagen production in KFs. Further mechanistic studies demonstrated that melatonin could inhibit the cAMP/PKA/Erk and Smad pathways through the membrane receptor MT2 to alter the biological characteristics of KFs. Moreover, the combination of melatonin and 5-FU remarkably promoted cell apoptosis and inhibited cell migration and invasion, contractile capability and collagen production in KFs. Furthermore, 5-FU suppressed the phosphorylation of Akt, mTOR, Smad3 and Erk, and melatonin in combination with 5-FU markedly suppressed the activation of the Akt, Erk and Smad pathways. Conclusions: Collectively, melatonin may inhibit the Erk and Smad pathways through the membrane receptor MT2 to alter the cell functions of KFs, while combination with 5-FU could exert even more inhibitory effects in KFs through simultaneous suppression of multiple signalling pathways.

19.
Environ Toxicol ; 38(5): 1174-1184, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36773305

RESUMO

Polyphyllin G, a pennogenyl saponin extracted from Paris polyphylla, has been shown to possess antitumor effects. In this study, we demonstrated that doxycycline, an antibiotic medicine, could significantly enhance the sensitivities of osteosarcoma cell lines to polyphyllin G. As the cells were pretreated with doxycycline at non-toxic concentrations and then co-exposed to polyphyllin G, this combination could induce a rapid cell death distinct from apoptosis. The non-apoptotic cell death was characterized by a loss of integrity of plasma membrane without externalization of phosphatidyl serine. Furthermore, this combined treatment resulted in suppression of cell viability and colony-forming ability, and increased the level of γ-H2A.X, a critical marker for DNA damage, in osteosarcoma cell lines. When examining the underlying mechanism, it was revealed combination of polyphyllin G and doxycycline triggered an enhanced generation of reactive oxygen species (ROS), and up-regulated mitochondrial oxidative stress within 0.5 h. Co-administration of the ROS inhibitor NAC reversed the suppressed cell viability and colony-forming ability, and abolished the increased level of γ-H2A.X in the cells with the combined treatment, indicating that the enhanced ROS was involved in the anti-proliferative effect of the combined treatment. Overall, the results demonstrated that doxycycline may function as chemosensitizers by inducing an acute and lethal ROS production to enhance cytotoxic of polyphyllin G in osteosarcoma cell lines, and the combined use of drugs may provide an alternative thinking for the development of new therapeutic agents.


Assuntos
Doxiciclina , Osteossarcoma , Espécies Reativas de Oxigênio , Saponinas , Humanos , Apoptose , Morte Celular , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Osteossarcoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico
20.
Small ; 19(16): e2206083, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683234

RESUMO

The notorious shuttle effect and sluggish conversion of polysulfides seriously hinder the practical application of Lithium-sulfur (Li-S) batteries. In this study, a novel architecture of MoS2 /MoO3 heterostructure uniformly distributed on carbon nanotubes (MoS2 /MoO3 @CNT) is designed and introduced into Li-S batteries via decorating commercial separator to regulate the redox reactions of polysulfides. Systematic experiments and theoretical calculations showed that the heterostructure not only provides sufficient surface affinity to capture polysulfides and acts as an active catalyst to promote the conversion of polysulfides, but also the highly conductive CNT enables rapid electron/ion migration. As a result, Li-S batteries with the MoS2 /MoO3 @CNT-PP separator deliver an impressive reversible capacity (1015 mAh g-1 at 0.2 A g-1 after 100 cycles), excellent rate capacity (873 mAh g-1 at 5 A g-1 ), and low self-discharge capacity loss (94.6% capacity retention after 7 days of standing). Moreover, even at an elevated temperature of 70 °C, it still exhibits high-capacity retention (800 mAh g-1 at 1 A g-1 after 100 cycles). Encouragingly, when the sulfur load is increased to 8.7 mg cm-2 , the high reversible areal capacity of 6.61 mAh cm-2 can be stably maintained after 100 cycles, indicating a high potential for practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...